
Computing Neural Network Gradients

Kevin Clark

1 Introduction

The purpose of these notes is to demonstrate how to quickly compute neural
network gradients in a completely vectorized way. It is complementary to the
last part of lecture 3 in CS224n 2019, which goes over the same material.

2 Vectorized Gradients

While it is a good exercise to compute the gradient of a neural network with re-
spect to a single parameter (e.g., a single element in a weight matrix), in practice
this tends to be quite slow. Instead, it is more efficient to keep everything in ma-
trix/vector form. The basic building block of vectorized gradients is the Jacobian
Matrix. Suppose we have a function f : Rn → Rm that maps a vector of length n
to a vector of length m: f(x) = [f1(x1, ..., xn), f2(x1, ..., xn), ..., fm(x1, ..., xn)].
Then its Jacobian is the following m× n matrix:

∂f

∂x
=


∂f1
∂x1

. . . ∂f1
∂xn

...
. . .

...
∂fm
∂x1

. . . ∂fm
∂xn


That is, (∂f

∂x)ij = ∂fi
∂xj

(which is just a standard non-vector derivative). The

Jacobian matrix will be useful for us because we can apply the chain rule to a
vector-valued function just by multiplying Jacobians.

As a little illustration of this, suppose we have a function f(x) = [f1(x), f2(x)]
taking a scalar to a vector of size 2 and a function g(y) = [g1(y1, y2), g2(y1, y2)]
taking a vector of size two to a vector of size two. Now let’s compose them to
get g(x) = [g1(f1(x), f2(x)), g2(f1(x), f2(x))]. Using the regular chain rule, we
can compute the derivative of g as the Jacobian

∂g

∂x
=

[
∂
∂xg1(f1(x), f2(x))
∂
∂xg2(f1(x), f2(x))

]
=

[
∂g1
∂f1

∂f1
∂x + ∂g1

∂f2

∂f2
∂x

∂g2
∂f1

∂f1
∂x + ∂g2

∂f2

∂f2
∂x

]

1

And we see this is the same as multiplying the two Jacobians:

∂g

∂x
=
∂g

∂f

∂f

∂x
=

[
∂g1
∂f1

∂g1
∂f2

∂g2
∂f1

∂g2
∂f2

] [
∂f1
∂x
∂f2
∂x

]

3 Useful Identities

This section will now go over how to compute the Jacobian for several simple
functions. It will provide some useful identities you can apply when taking neu-
ral network gradients.

(1) Matrix times column vector with respect to the column vector
(z = Wx, what is ∂z

∂x?)

Suppose W ∈ Rn×m. Then we can think of z as a function of x taking an
m-dimensional vector to an n-dimensional vector. So its Jacobian will be
n×m. Note that

zi =

m∑
k=1

Wikxk

So an entry (∂z
∂x)ij of the Jacobian will be

(
∂z

∂x
)ij =

∂zi
∂xj

=
∂

∂xj

m∑
k=1

Wikxk =

m∑
k=1

Wik
∂

∂xj
xk = Wij

because ∂
∂xj

xk = 1 if k = j and 0 if otherwise. So we see that
∂z

∂x
= W

(2) Row vector times matrix with respect to the row vector
(z = xW , what is ∂z

∂x?)

A computation similar to (1) shows that
∂z

∂x
= W T .

(3) A vector with itself
(z = x, what is ∂z

∂x?)
We have zi = xi. So

(
∂z

∂x
)ij =

∂zi
∂xj

=
∂

∂xj
xi =

{
1 if i = j

0 if otherwise

So we see that the Jacobian ∂z
∂x is a diagonal matrix where the entry at (i, i)

is 1. This is just the identity matrix:
∂z

∂x
= I . When applying the chain

2

rule, this term will disappear because a matrix or vector multiplied by the
identity matrix does not change.

(4) An elementwise function applied a vector
(z = f(x), what is ∂z

∂x?)
Since f is being applied elementwise, we have zi = f(xi). So

(
∂z

∂x
)ij =

∂zi
∂xj

=
∂

∂xj
f(xi) =

{
f ′(xi) if i = j

0 if otherwise

So we see that the Jacobian ∂z
∂x is a diagonal matrix where the entry at (i, i)

is the derivative of f applied to xi. We can write this as
∂z

∂x
= diag(f ′(x)) .

Since multiplication by a diagonal matrix is the same as doing elementwise

multiplication by the diagonal, we could also write ◦f ′(x) when applying

the chain rule.

(5) Matrix times column vector with respect to the matrix
(z = Wx, δ = ∂J

∂z what is ∂J
∂W = ∂J

∂z
∂z
∂W = δ ∂z

∂W ?)

This is a bit more complicated than the other identities. The reason for in-
cluding ∂J

∂z in the above problem formulation will become clear in a moment.

First suppose we have a loss function J (a scalar) and are computing its
gradient with respect to a matrix W ∈ Rn×m. Then we could think of J as
a function of W taking nm inputs (the entries of W) to a single output (J).
This means the Jacobian ∂J

∂W would be a 1 × nm vector. But in practice
this is not a very useful way of arranging the gradient. It would be much
nicer if the derivatives were in a n×m matrix like this:

∂J

∂W
=


∂J

∂W11
. . . ∂J

∂W1m

...
. . .

...
∂J

∂Wn1
. . . ∂J

∂Wnm


Since this matrix has the same shape as W , we could just subtract it (times
the learning rate) fromW when doing gradient descent. So (in a slight abuse
of notation) let’s find this matrix as ∂J

∂W instead.

This way of arranging the gradients becomes complicated when computing
∂z
∂W . Unlike J , z is a vector. So if we are trying to rearrange the gradients

like with ∂J
∂W , ∂z

∂W would be an n ×m × n tensor! Luckily, we can avoid
the issue by taking the gradient with respect to a single weight Wij instead.

3

∂z
∂Wij

is just a vector, which is much easier to deal with. We have

zk =

m∑
l=1

Wklxl

∂zk
∂Wij

=

m∑
l=1

xl
∂

∂Wij
Wkl

Note that ∂
∂Wij

Wkl = 1 if i = k and j = l and 0 if otherwise. So if k 6= i

everything in the sum is zero and the gradient is zero. Otherwise, the only
nonzero element of the sum is when l = j, so we just get xj . Thus we find
∂zk
∂Wij

= xj if k = i and 0 if otherwise. Another way of writing this is

∂z

∂Wij
=



0
...
0
xj
0
...
0


← ith element

Now let’s compute ∂J
∂Wij

∂J

∂Wij
=
∂J

∂z

∂z

∂Wij
= δ

∂z

∂Wij
=

m∑
k=1

δk
∂zk
∂Wij

= δixj

(the only nonzero term in the sum is δi
∂zi
∂Wij

). To get ∂J
∂W we want a ma-

trix where entry (i, j) is δixj . This matrix is equal to the outer product

∂J

∂W
= δTxT

(6) Row vector time matrix with respect to the matrix
(z = xW , δ = ∂J

∂z what is ∂J
∂W = δ ∂z

∂W ?)

A similar computation to (5) shows that
∂J

∂W
= xT δ .

(7) Cross-entropy loss with respect to logits (ŷ = softmax(θ), J =
CE(y, ŷ), what is ∂J

∂θ ?)

The gradient is
∂J

∂θ
= ŷ − y

(or (ŷ − y)T if y is a column vector).

4

These identities will be enough to let you quickly compute the gradients for many
neural networks. However, it’s important to know how to compute Jacobians
for other functions as well in case they show up. Some examples if you want
practice: dot product of two vectors, elementwise product of two vectors, 2-norm
of a vector. Feel free to use these identities in the assignments. One option is
just to memorize them. Another option is to figure them out by looking at the
dimensions. For example, only one ordering/orientation of δ and x will produce
the correct shape for ∂J

∂W (assuming W is not square).

4 Gradient Layout

Jacobean formulation is great for applying the chain rule: you just have to mul-
tiply the Jacobians. However, when doing SGD it’s more convenient to follow
the convention “the shape of the gradient equals the shape of the parameter”
(as we did when computing ∂J

∂W). That way subtracting the gradient times the
learning rate from the parameters is easy. We expect answers to homework
questions to follow this convention. Therefore if you compute the gradient
of a column vector using Jacobian formulation, you should take the transpose
when reporting your final answer so the gradient is a column vector. Another
option is to always follow the convention. In this case the identities may not
work, but you can still figure out the answer by making sure the dimensions of
your derivatives match up. Up to you which of these options you choose!

5 Example: 1-Layer Neural Network

This section provides an example of computing the gradients of a full neural
network. In particular we are going to compute the gradients of a one-layer
neural network trained with cross-entropy loss. The forward pass of the model
is as follows:

x = input

z = Wx+ b1

h = ReLU(z)

θ = Uh+ b2

ŷ = softmax(θ)

J = CE(y, ŷ)

It helps to break up the model into the simplest parts possible, so note that
we defined z and θ to split up the activation functions from the linear trans-
formations in the network’s layers. The dimensions of the model’s parameters
are

x ∈ RDx×1 b1 ∈ RDh×1 W ∈ RDh×Dx b2 ∈ RNc×1 U ∈ RNc×Dh

where Dx is the size of our input, Dh is the size of our hidden layer, and Nc is
the number of classes.

5

In this example, we will compute all of the network’s gradients:

∂J

∂U

∂J

∂b2

∂J

∂W

∂J

∂b1

∂J

∂x

To start with, recall that ReLU(x) = max(x, 0). This means

ReLU′(x) =

{
1 if x > 0

0 if otherwise
= sgn(ReLU(x))

where sgn is the signum function. Note that we are able to write the derivative
of the activation in terms of the activation itself.

Now let’s write out the chain rule for ∂J
∂U and ∂J

∂b2
:

∂J

∂U
=
∂J

∂ŷ

∂ŷ

∂θ

∂θ

∂U

∂J

∂b2
=
∂J

∂ŷ

∂ŷ

∂θ

∂θ

∂b2

Notice that ∂J
∂ŷ

∂ŷ
∂θ = ∂J

∂θ is present in both gradients. This makes the math a bit
cumbersome. Even worse, if we’re implementing the model without automatic
differentiation, computing ∂J

∂θ twice will be inefficient. So it will help us to define
some variables to represent the intermediate derivatives:

δ1 =
∂J

∂θ
δ2 =

∂J

∂z

These can be thought as the error signals passed down to θ and z when doing
backpropagation. We can compute them as follows:

δ1 =
∂J

∂θ
= (ŷ − y)T this is just identity (7)

δ2 =
∂J

∂z
=
∂J

∂θ

∂θ

∂h

∂h

∂z
using the chain rule

= δ1
∂θ

∂h

∂h

∂z
substituting in δ1

= δ1 U
∂h

∂z
using identity (1)

= δ1 U ◦ ReLU′(z) using identity (4)

= δ1 U ◦ sgn(h) we computed this earlier

A good way of checking our work is by looking at the dimensions of the Jaco-
bians:

∂J

∂z
= δ1 U ◦ sgn(h)

(1×Dh) (1×Nc) (Nc ×Dh) (Dh)

6

We see that the dimensions of all the terms in the gradient match up (i.e., the
number of columns in a term equals the number of rows in the next term). This
will always be the case if we computed our gradients correctly.

Now we can use the error terms to compute our gradients. Note that we trans-
pose out answers when computing the gradients for column vectors terms to
follow the shape convention.

∂J

∂U
=
∂J

∂θ

∂θ

∂U
= δ1

∂θ

∂U
= δT1 h

T using identity (5)

∂J

∂b2
=
∂J

∂θ

∂θ

∂b2
= δ1

∂θ

∂b2
= δT1 using identity (3) and transposing

∂J

∂W
=
∂J

∂θ

∂z

∂W
= δ2

∂z

∂W
= δT2 x

T using identity (5)

∂J

∂b1
=
∂J

∂θ

∂z

∂b1
= δ2

∂z

∂b1
= δT2 using identity (3) and transposing

∂J

∂x
=
∂J

∂θ

∂z

∂x
= (δ2W)T using identity (1) and transposing

7

